Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Respir Res ; 23(1): 202, 2022 Aug 09.
Article in English | MEDLINE | ID: covidwho-2214585

ABSTRACT

BACKGROUND: The efficacy and safety of complement inhibition in COVID-19 patients is unclear. METHODS: A multicenter randomized controlled, open-label trial. Hospitalized COVID-19 patients with signs of systemic inflammation and hypoxemia (PaO2/FiO2 below 350 mmHg) were randomized (2:1 ratio) to receive standard of care with or without the C5 inhibitor zilucoplan daily for 14 days, under antibiotic prophylaxis. The primary outcome was improvement in oxygenation at day 6 and 15. RESULTS: 81 patients were randomly assigned to zilucoplan (n = 55) or the control group (n = 26). 78 patients were included in the safety and primary analysis. Most were men (87%) and the median age was 63 years. The mean improvement in PaO2/FiO2 from baseline to day 6 was 56.4 mmHg in the zilucoplan group and 20.6 mmHg in the control group (mean difference + 35.8; 95% confidence interval (CI) - 9.4 to 80.9; p = 0.12), an effect also observed at day 15. Day 28 mortality was 9% in the zilucoplan and 21% in the control group (odds ratio 0.4; 95% CI 0.1 to 1.5). At long-term follow up, the distance walked in a 6-min test was 539.7 m in zilucoplan and 490.6 m in the control group (p = 0.18). Zilucoplan lowered serum C5b-9 (p < 0.001) and interleukin-8 (p = 0.03) concentration compared with control. No relevant safety differences between the zilucoplan and control group were identified. CONCLUSION: Administration of zilucoplan to COVID-19 patients in this proof-of-concept randomized trial was well tolerated under antibiotic prophylaxis. While not reaching statistical significance, indicators of respiratory function (PaO2/FiO2) and clinical outcome (mortality and 6-min walk test) suggest that C5 inhibition might be beneficial, although this requires further research in larger randomized studies.


Subject(s)
Anti-Infective Agents , COVID-19 Drug Treatment , Complement C5 , Complement Inactivating Agents/adverse effects , Female , Humans , Male , Middle Aged , Peptides, Cyclic , SARS-CoV-2 , Treatment Outcome
2.
Cell Rep Med ; : 100833, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2119962

ABSTRACT

GM-CSF promotes myelopoiesis and inflammation, and GM-CSF blockade is being evaluated as a treatment for COVID-19-associated hyperinflammation. Alveolar GM-CSF is, however, required for monocytes to differentiate into alveolar macrophages (AMs) that control alveolar homeostasis. By mapping cross-species AM development to clinical lung samples, we discovered that COVID-19 is marked by defective GM-CSF-dependent AM instruction and accumulation of pro-inflammatory macrophages. In a multi-center, open-label RCT in 81 non-ventilated COVID-19 patients with respiratory failure, we found that inhalation of rhu-GM-CSF did not improve mean oxygenation parameters compared with standard treatment. However, more patients on GM-CSF had a clinical response, and GM-CSF inhalation induced higher numbers of virus-specific CD8 effector lymphocytes and class-switched B cells, without exacerbating systemic hyperinflammation. This translational proof-of-concept study provides a rationale for further testing of inhaled GM-CSF as a non-invasive treatment to improve alveolar gas exchange and simultaneously boost antiviral immunity in COVID-19. This study is registered at ClinicalTrials.gov (NCT04326920) and EudraCT (2020-001254-22).

3.
J Exp Med ; 219(2)2022 02 07.
Article in English | MEDLINE | ID: covidwho-1984990

ABSTRACT

In rare instances, pediatric SARS-CoV-2 infection results in a novel immunodysregulation syndrome termed multisystem inflammatory syndrome in children (MIS-C). We compared MIS-C immunopathology with severe COVID-19 in adults. MIS-C does not result in pneumocyte damage but is associated with vascular endotheliitis and gastrointestinal epithelial injury. In MIS-C, the cytokine release syndrome is characterized by IFNγ and not type I interferon. Persistence of patrolling monocytes differentiates MIS-C from severe COVID-19, which is dominated by HLA-DRlo classical monocytes. IFNγ levels correlate with granzyme B production in CD16+ NK cells and TIM3 expression on CD38+/HLA-DR+ T cells. Single-cell TCR profiling reveals a skewed TCRß repertoire enriched for TRBV11-2 and a superantigenic signature in TIM3+/CD38+/HLA-DR+ T cells. Using NicheNet, we confirm IFNγ as a central cytokine in the communication between TIM3+/CD38+/HLA-DR+ T cells, CD16+ NK cells, and patrolling monocytes. Normalization of IFNγ, loss of TIM3, quiescence of CD16+ NK cells, and contraction of patrolling monocytes upon clinical resolution highlight their potential role in MIS-C immunopathogenesis.


Subject(s)
COVID-19/complications , Hepatitis A Virus Cellular Receptor 2/metabolism , Interferon-gamma/metabolism , Killer Cells, Natural/immunology , Monocytes/metabolism , Receptors, IgG/metabolism , Systemic Inflammatory Response Syndrome/immunology , T-Lymphocytes/immunology , Adolescent , Alveolar Epithelial Cells/pathology , B-Lymphocytes/immunology , Blood Vessels/pathology , COVID-19/immunology , COVID-19/pathology , Cell Proliferation , Child , Cohort Studies , Complement Activation , Cytokines/metabolism , Enterocytes/pathology , Female , Humans , Immunity, Humoral , Inflammation/pathology , Interferon Type I/metabolism , Interleukin-15/metabolism , Lymphocyte Activation/immunology , Male , Receptors, Antigen, T-Cell/metabolism , SARS-CoV-2/immunology , Superantigens/metabolism , Systemic Inflammatory Response Syndrome/pathology
4.
ERJ Open Res ; 8(2)2022 Apr.
Article in English | MEDLINE | ID: covidwho-1854769

ABSTRACT

Background: Long-term outcome data of coronavirus disease 2019 (COVID-19) survivors are needed to understand their recovery trajectory and additional care needs. Methods: A prospective observational multicentre cohort study was carried out of adults hospitalised with COVID-19 from March through May 2020. Workup at 3 and 12 months following admission consisted of clinical review, pulmonary function testing, 6-min walk distance (6MWD), muscle strength, chest computed tomography (CT) and quality of life questionnaires. We evaluated factors correlating with recovery by linear mixed effects modelling. Results: Of 695 patients admitted, 299 and 226 returned at 3 and 12 months, respectively (median age 59 years, 69% male, 31% severe disease). About half and a third of the patients reported fatigue, dyspnoea and/or cognitive impairment at 3 and 12 months, respectively. Reduced 6MWD and quadriceps strength were present in 20% and 60% at 3 months versus 7% and 30% at 12 months. A high anxiety score and body mass index correlated with poor functional recovery. At 3 months, diffusing capacity for carbon monoxide (D LCO) and total lung capacity were below the lower limit of normal in 35% and 18%, decreasing to 21% and 16% at 12 months; predictors of poor D LCO recovery were female sex, pre-existing lung disease, smoking and disease severity. Chest CT improved over time; 10% presented non-progressive fibrotic changes at 1 year. Conclusion: Many COVID-19 survivors, especially those with severe disease, experienced limitations at 3 months. At 1 year, the majority showed improvement to almost complete recovery. To identify additional care or rehabilitation needs, we recommend a timely multidisciplinary follow-up visit following COVID-19 admission.

5.
ERJ open research ; 8(2), 2022.
Article in English | EuropePMC | ID: covidwho-1782050

ABSTRACT

Background Long-term outcome data of coronavirus disease 2019 (COVID-19) survivors are needed to understand their recovery trajectory and additional care needs. Methods A prospective observational multicentre cohort study was carried out of adults hospitalised with COVID-19 from March through May 2020. Workup at 3 and 12 months following admission consisted of clinical review, pulmonary function testing, 6-min walk distance (6MWD), muscle strength, chest computed tomography (CT) and quality of life questionnaires. We evaluated factors correlating with recovery by linear mixed effects modelling. Results Of 695 patients admitted, 299 and 226 returned at 3 and 12 months, respectively (median age 59 years, 69% male, 31% severe disease). About half and a third of the patients reported fatigue, dyspnoea and/or cognitive impairment at 3 and 12 months, respectively. Reduced 6MWD and quadriceps strength were present in 20% and 60% at 3 months versus 7% and 30% at 12 months. A high anxiety score and body mass index correlated with poor functional recovery. At 3 months, diffusing capacity for carbon monoxide (DLCO) and total lung capacity were below the lower limit of normal in 35% and 18%, decreasing to 21% and 16% at 12 months;predictors of poor DLCO recovery were female sex, pre-existing lung disease, smoking and disease severity. Chest CT improved over time;10% presented non-progressive fibrotic changes at 1 year. Conclusion Many COVID-19 survivors, especially those with severe disease, experienced limitations at 3 months. At 1 year, the majority showed improvement to almost complete recovery. To identify additional care or rehabilitation needs, we recommend a timely multidisciplinary follow-up visit following COVID-19 admission. Most hospitalised #COVID19 survivors show promising recovery 1 year after discharge, although mild symptoms may linger. Severe impairments are rare, but this study suggests an evaluation of the individual care needs after discharge.https://bit.ly/3sZK45x

6.
Lancet Respir Med ; 9(12): 1427-1438, 2021 12.
Article in English | MEDLINE | ID: covidwho-1621131

ABSTRACT

BACKGROUND: Infections with SARS-CoV-2 continue to cause significant morbidity and mortality. Interleukin (IL)-1 and IL-6 blockade have been proposed as therapeutic strategies in COVID-19, but study outcomes have been conflicting. We sought to study whether blockade of the IL-6 or IL-1 pathway shortened the time to clinical improvement in patients with COVID-19, hypoxic respiratory failure, and signs of systemic cytokine release syndrome. METHODS: We did a prospective, multicentre, open-label, randomised, controlled trial, in hospitalised patients with COVID-19, hypoxia, and signs of a cytokine release syndrome across 16 hospitals in Belgium. Eligible patients had a proven diagnosis of COVID-19 with symptoms between 6 and 16 days, a ratio of the partial pressure of oxygen to the fraction of inspired oxygen (PaO2:FiO2) of less than 350 mm Hg on room air or less than 280 mm Hg on supplemental oxygen, and signs of a cytokine release syndrome in their serum (either a single ferritin measurement of more than 2000 µg/L and immediately requiring high flow oxygen or mechanical ventilation, or a ferritin concentration of more than 1000 µg/L, which had been increasing over the previous 24 h, or lymphopenia below 800/mL with two of the following criteria: an increasing ferritin concentration of more than 700 µg/L, an increasing lactate dehydrogenase concentration of more than 300 international units per L, an increasing C-reactive protein concentration of more than 70 mg/L, or an increasing D-dimers concentration of more than 1000 ng/mL). The COV-AID trial has a 2 × 2 factorial design to evaluate IL-1 blockade versus no IL-1 blockade and IL-6 blockade versus no IL-6 blockade. Patients were randomly assigned by means of permuted block randomisation with varying block size and stratification by centre. In a first randomisation, patients were assigned to receive subcutaneous anakinra once daily (100 mg) for 28 days or until discharge, or to receive no IL-1 blockade (1:2). In a second randomisation step, patients were allocated to receive a single dose of siltuximab (11 mg/kg) intravenously, or a single dose of tocilizumab (8 mg/kg) intravenously, or to receive no IL-6 blockade (1:1:1). The primary outcome was the time to clinical improvement, defined as time from randomisation to an increase of at least two points on a 6-category ordinal scale or to discharge from hospital alive. The primary and supportive efficacy endpoints were assessed in the intention-to-treat population. Safety was assessed in the safety population. This study is registered online with ClinicalTrials.gov (NCT04330638) and EudraCT (2020-001500-41) and is complete. FINDINGS: Between April 4, and Dec 6, 2020, 342 patients were randomly assigned to IL-1 blockade (n=112) or no IL-1 blockade (n=230) and simultaneously randomly assigned to IL-6 blockade (n=227; 114 for tocilizumab and 113 for siltuximab) or no IL-6 blockade (n=115). Most patients were male (265 [77%] of 342), median age was 65 years (IQR 54-73), and median Systematic Organ Failure Assessment (SOFA) score at randomisation was 3 (2-4). All 342 patients were included in the primary intention-to-treat analysis. The estimated median time to clinical improvement was 12 days (95% CI 10-16) in the IL-1 blockade group versus 12 days (10-15) in the no IL-1 blockade group (hazard ratio [HR] 0·94 [95% CI 0·73-1·21]). For the IL-6 blockade group, the estimated median time to clinical improvement was 11 days (95% CI 10-16) versus 12 days (11-16) in the no IL-6 blockade group (HR 1·00 [0·78-1·29]). 55 patients died during the study, but no evidence for differences in mortality between treatment groups was found. The incidence of serious adverse events and serious infections was similar across study groups. INTERPRETATION: Drugs targeting IL-1 or IL-6 did not shorten the time to clinical improvement in this sample of patients with COVID-19, hypoxic respiratory failure, low SOFA score, and low baseline mortality risk. FUNDING: Belgian Health Care Knowledge Center and VIB Grand Challenges program.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/therapeutic use , COVID-19 Drug Treatment , Cytokine Release Syndrome , Respiratory Insufficiency , Aged , Belgium , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/virology , Female , Ferritins , Humans , Hypoxia , Interleukin-1/antagonists & inhibitors , Interleukin-6/antagonists & inhibitors , Male , Middle Aged , Oxygen , Prospective Studies , Respiratory Insufficiency/drug therapy , Respiratory Insufficiency/virology , SARS-CoV-2 , Treatment Outcome
7.
Front Immunol ; 11: 596761, 2020.
Article in English | MEDLINE | ID: covidwho-972668

ABSTRACT

The disease course of COVID-19 in patients with immunodeficiencies is unclear, as well as the optimal therapeutic strategy. We report a case of a 37-year old male with common variable immunodeficiency disorder and a severe SARS-CoV-2 infection. After administration of convalescent plasma, the patient's condition improved rapidly. Despite clinical recovery, viral RNA remained detectable up to 60 days after onset of symptoms. We propose that convalescent plasma might be considered as a treatment option in patients with CVID and severe COVID-19. In addition, in patients with immunodeficiencies, a different clinical course is possible, with prolonged viral shedding.


Subject(s)
Antibodies, Viral/administration & dosage , COVID-19/therapy , Common Variable Immunodeficiency , RNA, Viral , SARS-CoV-2 , Virus Shedding , Adult , COVID-19/blood , COVID-19/immunology , Common Variable Immunodeficiency/blood , Common Variable Immunodeficiency/immunology , Common Variable Immunodeficiency/therapy , Humans , Immunization, Passive , Male , RNA, Viral/blood , RNA, Viral/immunology , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Virus Shedding/drug effects , Virus Shedding/immunology , COVID-19 Serotherapy
8.
Trials ; 21(1): 934, 2020 Nov 19.
Article in English | MEDLINE | ID: covidwho-934298

ABSTRACT

OBJECTIVES: Zilucoplan (complement C5 inhibitor) has profound effects on inhibiting acute lung injury post COVID-19, and can promote lung repair mechanisms that lead to improvement in lung oxygenation parameters. The purpose of this study is to investigate the efficacy and safety of Zilucoplan in improving oxygenation and short- and long-term outcome of COVID-19 patients with acute hypoxic respiratory failure. TRIAL DESIGN: This is a phase 2 academic, prospective, 2:1 randomized, open-label, multi-center interventional study. PARTICIPANTS: Adult patients (≥18y old) will be recruited at specialized COVID-19 units and ICUs at 9 Belgian hospitals. The main eligibility criteria are as follows: 1) Inclusion criteria: a. Recent (≥6 days and ≤16 days) SARS-CoV-2 infection. b. Chest CT scan showing bilateral infiltrates within the last 2 days prior to randomisation. c. Acute hypoxia (defined as PaO2/FiO2 below 350 mmHg or SpO2 below 93% on minimal 2 L/min supplemental oxygen). d. Signs of cytokine release syndrome characterized by either high serum ferritin, or high D-dimers, or high LDH or deep lymphopenia or a combination of those. 2) Exclusion criteria: e. Mechanical ventilation for more than 24 hours prior to randomisation. f. Active bacterial or fungal infection. g. History of meningococcal disease (due to the known high predisposition to invasive, often recurrent meningococcal infections of individuals deficient in components of the alternative and terminal complement pathways). INTERVENTION AND COMPARATOR: Patients in the experimental arm will receive daily 32,4 mg Zilucoplan subcutaneously and a daily IV infusion of 2g of the antibiotic ceftriaxone for 14 days (or until hospital discharge, whichever comes first) in addition to standard of care. These patients will receive additional prophylactic antibiotics until 14 days after the last Zilucoplan dose: hospitalized patients will receive a daily IV infusion of 2g of ceftriaxone, discharged patients will switch to daily 500 mg of oral ciprofloxacin. The control group will receive standard of care and a daily IV infusion of 2g of ceftriaxone for 1 week (or until hospital discharge, whichever comes first), to control for the effects of antibiotics on the clinical course of COVID-19. MAIN OUTCOMES: The primary endpoint is the improvement of oxygenation as measured by mean and/or median change from pre-treatment (day 1) to post-treatment (day 6 and 15 or at discharge, whichever comes first) in PaO2/FiO2 ratio, P(A-a)O2 gradient and a/A PO2 ratio. (PAO2= Partial alveolar pressure of oxygen, PaO2=partial arterial pressure of oxygen, FiO2=Fraction of inspired oxygen). RANDOMISATION: Patients will be randomized in a 2:1 ratio (Zilucoplan: control). Randomization will be done using an Interactive Web Response System (REDCap). BLINDING (MASKING): In this open-label trial neither participants, caregivers, nor those assessing the outcomes will be blinded to group assignment. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): A total of 81 patients will be enrolled: 54 patients will be randomized to the experimental arm and 27 patients to the control arm. TRIAL STATUS: ZILU-COV protocol Version 4.0 (June 10 2020). Participant recruitment started on June 23 2020 and is ongoing. Given the uncertainty of the pandemic, it is difficult to predict the anticipated end date. TRIAL REGISTRATION: The trial was registered on Clinical Trials.gov on May 11th, 2020 (ClinicalTrials.gov Identifier: NCT04382755 ) and on EudraCT (Identifier: 2020-002130-33 ). FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Complement C5/antagonists & inhibitors , Coronavirus Infections/complications , Hypoxia/drug therapy , Pneumonia, Viral/complications , Respiratory Insufficiency/drug therapy , Acute Disease , Adult , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Belgium/epidemiology , Betacoronavirus/isolation & purification , COVID-19 , Case-Control Studies , Ceftriaxone/administration & dosage , Ceftriaxone/therapeutic use , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Coronavirus Infections/virology , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/drug therapy , Drug Therapy, Combination , Humans , Infusions, Intravenous , Injections, Subcutaneous , Oxygen/blood , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/physiopathology , Pneumonia, Viral/virology , Prospective Studies , SARS-CoV-2 , Safety , Treatment Outcome
9.
J Allergy Clin Immunol ; 147(2): 520-531, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-792893

ABSTRACT

BACKGROUND: There is uncertainty about the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in individuals with rare inborn errors of immunity (IEI), a population at risk of developing severe coronavirus disease 2019. This is relevant not only for these patients but also for the general population, because studies of IEIs can unveil key requirements for host defense. OBJECTIVE: We sought to describe the presentation, manifestations, and outcome of SARS-CoV-2 infection in IEI to inform physicians and enhance understanding of host defense against SARS-CoV-2. METHODS: An invitation to participate in a retrospective study was distributed globally to scientific, medical, and patient societies involved in the care and advocacy for patients with IEI. RESULTS: We gathered information on 94 patients with IEI with SARS-CoV-2 infection. Their median age was 25 to 34 years. Fifty-three patients (56%) suffered from primary antibody deficiency, 9 (9.6%) had immune dysregulation syndrome, 6 (6.4%) a phagocyte defect, 7 (7.4%) an autoinflammatory disorder, 14 (15%) a combined immunodeficiency, 3 (3%) an innate immune defect, and 2 (2%) bone marrow failure. Ten were asymptomatic, 25 were treated as outpatients, 28 required admission without intensive care or ventilation, 13 required noninvasive ventilation or oxygen administration, 18 were admitted to intensive care units, 12 required invasive ventilation, and 3 required extracorporeal membrane oxygenation. Nine patients (7 adults and 2 children) died. CONCLUSIONS: This study demonstrates that (1) more than 30% of patients with IEI had mild coronavirus disease 2019 (COVID-19) and (2) risk factors predisposing to severe disease/mortality in the general population also seemed to affect patients with IEI, including more younger patients. Further studies will identify pathways that are associated with increased risk of severe disease and are nonredundant or redundant for protection against SARS-CoV-2.


Subject(s)
COVID-19/epidemiology , Genetic Diseases, Inborn/epidemiology , Immunologic Deficiency Syndromes/epidemiology , SARS-CoV-2 , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Retrospective Studies , Risk Factors , Severity of Illness Index , Young Adult
12.
Trials ; 21(1): 491, 2020 Jun 05.
Article in English | MEDLINE | ID: covidwho-531140

ABSTRACT

OBJECTIVES: The hypothesis of the proposed intervention is that Granulocyte-macrophage colony-stimulating factor (GM-CSF) has profound effects on antiviral immunity, and can provide the stimulus to restore immune homeostasis in the lung with acute lung injury post COVID-19, and can promote lung repair mechanisms, that lead to a 25% improvement in lung oxygenation parameters. Sargramostim is a man-made form of the naturally-occurring protein GM-CSF. TRIAL DESIGN: A phase 4 academic, prospective, 2 arm (1:1 ratio), randomized, open-label, controlled trial. PARTICIPANTS: Patients aged 18-80 years admitted to specialized COVID-19 wards in 5 Belgian hospitals with recent (< 2 weeks prior to randomization) confirmed COVID-19 infection and acute respiratory failure defined as a PaO2/FiO2 below 350 mmHg or SpO2 below 93% on minimal 2 L/min supplemental oxygen. Patients were excluded from the trial in case of (1) known serious allergic reactions to yeast-derived products, (2) lithium carbonate therapy, (3) mechanical ventilation prior to randomization, (4) peripheral white blood cell count above 25.000/µL and/or active myeloid malignancy, (5) high dose systemic steroid therapy (> 20 mg methylprednisolone or equivalent), (6) enrolment in another investigational study, (7) pregnant or breastfeeding or (8) ferritin levels > 2000 µg/mL. INTERVENTION AND COMPARATOR: Inhaled sargramostim 125 µg twice daily for 5 days in addition to standard care. Upon progression of disease requiring mechanical ventilation or to acute respiratory distress syndrome (ARDS) and initiation of mechanical ventilator support within the 5 day period, inhaled sargramostim will be replaced by intravenous sargramostim 125 µg/m2 body surface area once daily until the 5 day period is reached. From day 6 onwards, progressive patients in the active group will have the option to receive an additional 5 days of IV sargramostim, based on the treating physician's assessment. Intervention will be compared to standard of care. Subjects progressing to ARDS and requiring invasive mechanical ventilatory support, from day 6 onwards in the standard of care group will have the option (clinician's decision) to initiate IV sargramostim 125m µg/m2 body surface area once daily for 5 days. MAIN OUTCOMES: The primary endpoint of this intervention is measuring oxygenation after 5 days of inhaled (and intravenous) treatment through assessment of a change in pretreatment and post-treatment ratio of PaO2/FiO2 and through measurement of the P(A-a)O2 gradient (PAO2= Partial alveolar pressure of oxygen, PaO2=Partial arterial pressure of oxygen; FiO2= Fraction of inspired oxygen). RANDOMISATION: Patients will be randomized in a 1:1 ratio. Randomization will be done using REDCap (electronic IWRS system). BLINDING (MASKING): In this open-label trial neither participants, caregivers, nor those assessing the outcomes will be blinded to group assignment. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): A total of 80 patients with confirmed COVID-19 and acute hypoxic respiratory failure will be enrolled, 40 in the active and 40 in the control group. TRIAL STATUS: SARPAC protocol Version 2.0 (April 15 2020). Participant recruitment is ongoing in 5 Belgian Hospitals (i.e. University Hospital Ghent, AZ Sint-Jan Bruges, AZ Delta Roeselare, University Hospital Brussels and ZNA Middelheim Antwerp). Participant recruitment started on March 26th 2020. Given the current decline of the COVID-19 pandemic in Belgium, it is difficult to anticipate the rate of participant recruitment. TRIAL REGISTRATION: The trial was registered on Clinical Trials.gov on March 30th, 2020 (ClinicalTrials.gov Identifier: NCT04326920) - retrospectively registered; https://clinicaltrials.gov/ct2/show/NCT04326920?term=sarpac&recrs=ab&draw=2&rank=1 and on EudraCT on March 24th, 2020 (Identifier: 2020-001254-22). FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Pneumonia, Viral/complications , Randomized Controlled Trials as Topic , Respiratory Insufficiency/drug therapy , Acute Disease , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Clinical Trials, Phase IV as Topic , Female , Humans , Male , Middle Aged , Oxygen/blood , Pandemics , Prospective Studies , Recombinant Proteins/therapeutic use , Respiration, Artificial , SARS-CoV-2 , Young Adult
13.
Trials ; 21(1): 468, 2020 Jun 03.
Article in English | MEDLINE | ID: covidwho-506033

ABSTRACT

OBJECTIVES: The purpose of this study is to test the safety and effectiveness of individually or simultaneously blocking IL-6, IL-6 receptor and IL-1 versus standard of care on blood oxygenation and systemic cytokine release syndrome in patients with COVID-19 coronavirus infection and acute hypoxic respiratory failure and systemic cytokine release syndrome. TRIAL DESIGN: A phase 3 prospective, multi-center, interventional, open label, 6-arm 2x2 factorial design study. PARTICIPANTS: Subjects will be recruited at the specialized COVID-19 wards and/or ICUs at 16 Belgian participating hospitals. Only adult (≥18y old) patients will be recruited with recent (≤16 days) COVID-19 infection and acute hypoxia (defined as PaO2/FiO2 below 350mmHg or PaO2/FiO2 below 280 on supplemental oxygen and immediately requiring high flow oxygen device or mechanical ventilation) and signs of systemic cytokine release syndrome characterized by high serum ferritin, or high D-dimers, or high LDH or deep lymphopenia or a combination of those, who have not been on mechanical ventilation for more than 24 hours before randomisation. Patients should have had a chest X-ray and/or CT scan showing bilateral infiltrates within the last 2 days before randomisation. Patients with active bacterial or fungal infection will be excluded. INTERVENTION AND COMPARATOR: Patients will be randomized to 1 of 5 experimental arms versus usual care. The experimental arms consist of Anakinra alone (anti-IL-1 binding the IL-1 receptor), Siltuximab alone (anti-IL-6 chimeric antibody), a combination of Siltuximab and Anakinra, Tocilizumab alone (humanised anti-IL-6 receptor antibody) or a combination of Anakinra with Tocilizumab in addition to standard care. Patients treated with Anakinra will receive a daily subcutaneous injection of 100mg for a maximum of 28 days or until hospital discharge, whichever comes first. Siltuximab (11mg/kg) or Tocilizumab (8mg/kg, with a maximum dose of 800mg) are administered as a single intravenous injection immediately after randomization. MAIN OUTCOMES: The primary end point is the time to clinical improvement defined as the time from randomization to either an improvement of two points on a six-category ordinal scale measured daily till day 28 or discharge from the hospital or death. This ordinal scale is composed of (1) Death; (2) Hospitalized, on invasive mechanical ventilation or ECMO; (3) Hospitalized, on non-invasive ventilation or high flow oxygen devices; (4) Hospitalized, requiring supplemental oxygen; (5) Hospitalized, not requiring supplemental oxygen; (6) Not hospitalized. RANDOMISATION: Patients will be randomized using an Interactive Web Response System (REDCap). A 2x2 factorial design was selected with a 2:1 randomization regarding the IL-1 blockade (Anakinra) and a 1:2 randomization regarding the IL-6 blockade (Siltuximab and Tocilizumab). BLINDING (MASKING): In this open-label trial neither participants, caregivers, nor those assessing the outcomes are blinded to group assignment. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): A total of 342 participants will be enrolled: 76 patients will receive usual care, 76 patients will receive Siltuximab alone, 76 patients will receive Tocilizumab alone, 38 will receive Anakinra alone, 38 patients will receive Anakinra and Siltuximab and 38 patients will receive Anakinra and Tocilizumab. TRIAL STATUS: COV-AID protocol version 3.0 (15 Apr 2020). Participant recruitment is ongoing and started on April 4th 2020. Given the current decline of the COVID-19 pandemic in Belgium, it is difficult to anticipate the rate of participant recruitment. TRIAL REGISTRATION: The trial was registered on Clinical Trials.gov on April 1st, 2020 (ClinicalTrials.gov Identifier: NCT04330638) and on EudraCT on April 3rd 2020 (Identifier: 2020-001500-41). FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/therapeutic use , Betacoronavirus/drug effects , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Anti-Inflammatory Agents/adverse effects , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal, Humanized/adverse effects , Belgium , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Clinical Trials, Phase III as Topic , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Coronavirus Infections/virology , Drug Therapy, Combination , Host-Pathogen Interactions , Humans , Interleukin 1 Receptor Antagonist Protein/adverse effects , Interleukin-1/antagonists & inhibitors , Interleukin-1/blood , Interleukin-1/immunology , Interleukin-6/antagonists & inhibitors , Interleukin-6/blood , Interleukin-6/immunology , Multicenter Studies as Topic , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Prospective Studies , Randomized Controlled Trials as Topic , Receptors, Interleukin-6/antagonists & inhibitors , Receptors, Interleukin-6/blood , Receptors, Interleukin-6/immunology , SARS-CoV-2 , Severity of Illness Index , Time Factors , Treatment Outcome
14.
Immunity ; 52(6): 1039-1056.e9, 2020 06 16.
Article in English | MEDLINE | ID: covidwho-209829

ABSTRACT

The phenotypic and functional dichotomy between IRF8+ type 1 and IRF4+ type 2 conventional dendritic cells (cDC1s and cDC2s, respectively) is well accepted; it is unknown how robust this dichotomy is under inflammatory conditions, when additionally monocyte-derived cells (MCs) become competent antigen-presenting cells (APCs). Using single-cell technologies in models of respiratory viral infection, we found that lung cDC2s acquired expression of the Fc receptor CD64 shared with MCs and of IRF8 shared with cDC1s. These inflammatory cDC2s (inf-cDC2s) were superior in inducing CD4+ T helper (Th) cell polarization while simultaneously presenting antigen to CD8+ T cells. When carefully separated from inf-cDC2s, MCs lacked APC function. Inf-cDC2s matured in response to cell-intrinsic Toll-like receptor and type 1 interferon receptor signaling, upregulated an IRF8-dependent maturation module, and acquired antigens via convalescent serum and Fc receptors. Because hybrid inf-cDC2s are easily confused with monocyte-derived cells, their existence could explain why APC functions have been attributed to MCs.


Subject(s)
Cell Plasticity/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Immunity , Macrophages/immunology , Macrophages/metabolism , Respirovirus Infections/etiology , Antigen Presentation , Biomarkers , Disease Susceptibility , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Immunophenotyping , Interferon Type I/metabolism , Monocytes/immunology , Monocytes/metabolism , Organ Specificity/immunology , Receptors, Fc/metabolism , Respirovirus Infections/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Transcription Factors , Virus Diseases/genetics , Virus Diseases/immunology , Virus Diseases/metabolism , Virus Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL